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I. INTRODUCTION

This report was prepared for the Advanced Logistics Research
Division, Bureau of Supplies and Accounis, U. S. Navy, in partial fulfill-

meni of Navy Contract Nonr 2904(00).

A major goal of the Navy is to develop scientific inventory decision
rules that will reduce supply system costs while maintaining system effective-
ness. As an importani step in developing these rules, the Navy is devoting
much effort to the construction of mathematical models that describe the cost
and service effects of inveniory policies, The utility of the rules in minimizing
sysiem cost depends upon tie ability of the mathematical models to approximate

real-world behavior.

The essential components of a mathematical model of an inventory

BV

syslem are;

1. The direct costs of operaiung the system, e.qg.,
holding costs,transporiation cosis, procurement
order costs.

2. The impuied costs of departing from system
effectiveness criteria, e.g., stockout costs.

3. The administrative costs of managing the
system, e.g., data collection, wransmittal
and processing costs.

4. The constraints imposed on the system, e.g.,
warehouse capacities, budget limiiations.

5. The demand process that the system must
satisfy, e.g., periodic replenishment,
random failures.

1/ See for example, Transpor.ation-Inventory Trade-offs, Phase B, Decision
Models for Supply System Operations, prepared for Bureau of Supplies and
Accounis under Navy Coniract Nonr 2904(00), by Uniied Research Inc., 1960,




In this report we are concerned with mathematical characterizations
of only the demand processes. In the majority of supply situations, the
quantity that will be demanded in a given time period is uncertain. Consequently,
the behavior of demand with time must be considered to be a random process,
describable only in terms of probability distributions. Our primary interest is
in the exploration of probability distributions for describing demand that are

useful in constructing inventory models.

Ideally, all Navy Supply System items could be described by a single
distribution having but one parameter, say average demand per time period.
The nature of replacement demand, however, varies widely among items in the
sysiem. Some items are consumed in a regular manner that can be predicted
with precision, such as food iiems, and items that are not actually consumed,
bu. may be replaced periodically, or arbitrarily, such as submarine batteries
and paint, Other items are consumed in a purely random fashion. This isthe
case, for example, with cer.ain ship parts, or items that have working lives
much longer than useful lives and need replacement due to "accidental®
failures. Hatch covers, ship's propellers and shafts, and ladders are items

in this category.

It is thus possible o distinguish several classes of items that differ
from each other not only in their average demand per time period, but also in
their variability of demand. The most commonly used mathematical model which
assumes that the quantity demanded will always be one unit and that a demand
is as likely in any one short time period as in any other, is not capable of

describing the behavior of all these classes.

Consequently, investigators have sougnt more general mathematical

models capable of providing a better description of the observed demand



processes, Two of the models that have frequently been suggested are the

negative binomial and the stuttering Poisson.

To understand why such distributions have been favored over the
infinite number of possible demand models, it is necessary to consider the
factors that must influence the investigator in selecting a distribution. It
is of primary importance to recognize that any probability distribution selected
to describe a demand process will be an approximation. It is an approximation
in the sense that there is no experimental method for determining with absolute
certainty the fact that the model corresponds to reality. Nevertheless, an
approximation is an adequate representation of the process if there is a high
probability that the past history of the demand process could have been
generated by the model. If the past history of demand is an improbable
realization of the process described by the model, then the course of prudence
is to reject the model. On the other hand, there may be many probabilistic
models that could have generated the observed demand with high probability;
in this case, statistical considerations alone cannot serve as a basis for
deciding which of these models is an appropriate representation of the demand

process.

The use of empirical distributions of demand in inventory system
models 1s seen to be especially unsound in view of the preceding argument,
The past history of demand is but a single realization of the demand process,
and the accumulation of future demand data may show that it was an extremely

improbable realization,

A second important factor in selecting demand distributions is that,
for practical reasons, only those approximating distributions that are relatively

simple in form can be considered to be satisfactory. There are several reasons



why we seek simpliciiy, in the sensc of mathematical tractibilicy and descrip=
tion of item demand by a limited number of parameters. Mathematically

tractible demand distributions dare prerequisites to the mathematical analysis ot
inventory systems, In fact, only the most elementary properties of an invenicrv
system can be determined mathematically if the demand distribution of the

sys:tem cannot be considered to belong to a sururisingly small class of probebilicy
distributions. urthermore , the developmen. of con.rol rules 1s made almost

Jqupossibly difficult unless this condition is met,

Limitation of the number of parameters of the distribution is required
because tihe linuted amount of data availlable 1n most inventory situations 1s
sufficient o yield statistically significant estimates of only a few paramecers,
70 the extent that the models contain more parameters than can be estimated
with assurance, the investigator would be better advised 1o use a simpler
demand model until more 1nformation on tine demand process 1s accumulated.
Since 1n most demand situations, only the mcan and variance can be meaning-
fully measured or predic.ed, only those models whose parameters are deter-

minable fromn these quantutics should be employea,

Another 1mpur.ant facior 1n selec.ing a demand distribution 1s
assoclated with simplicity bui not directly related to :it. This factor 1s -he
physical interpretabilicy of the probability distribu.aons used to describe
demand. A majot distinction between the statistician or ma.hematiciau and
the operations analys. hies i ‘hewr regard for the prysical interpretabibity
of the results. The maithematlician s primarily concerncd with the "fat*
of his thevureucal distrination 0 the emprical distribudon, If che fit 15 good
in a statistical scnsc, then the mathematician can usually decide that e bas

obiained a satisfactory descriptica of the process. The operations analyst,



on the other hand, requires not only mathematical significance, but also
physical reasonableness of the results. The operations analyst first observes
the physical process of demand and then hypothesizes a microscopic model

of demand., He determines the over~all demand distribution that would be
generated by the microscopic model, and, at this point, establishes the
validity of his characterization of the process by comparing the statistical

properties of his model with those of the real world.

The distinction between the two approaches is not trivial, The
requirement of physical reasonableness helps to assure the operations analyst
that he has not ignored some important physical aspects of the problem in
formulating the mathematical model. Just as one would be wary of driving
over bridges, or of flying in airplanes designed entirely by mathematicians,
so should he be cautious in accepting the results of an inventory model based

on mathematical considerations alone.



II. SUMMARY

The purpose of this report is to examine the probability distributions
that are pertinent to the description of Navy replacement demand processes.
Demand patterns observed in the Navy Supply System indicate that the actual
demand process is complicated. Simple Poisson models for demand appear to
be useful only in special situations, such as for certain classes of items that
have very low demand rates. The remaining situations indicate that there is
more “clumping® of demand or regularity of time between demands than is

predicted by the Poisson model,

Consequently, various investigators have proposed other models
that allow for a range of variance-t(o-mean ratios and other statistical param-
eters of demand to capture the basic nature of these more complex patterns. In
particular such disiributions as the negative binomial, stuttering Poisson,
geometric Poisson and the Erlang appear frequently in the literature of logistics
systems, and are discussed in this report. Scrutiny of these models has
revealed that the class of mocels that has been considered for describing the
demand process i1s not so large as it might appear because some of the models
are special cases of others. In particular the following properties of commonly
used demand distributions uo not seem to be generally appreciated by inventory
systems analysts;

1. The assumption that demand in any time period is

statistically independent of demand in any other
non-overlapping time period implies that the

demand must be described by a member of the glass
of distributions known as compound Poisson .-1/

1/ Al'hough some investigators use the term compound Poisson to refer to the
s.uttering Poisson distribution, this usage is misleading since many other
distributions are also compound Poisson distributions.



2. Although the stuttering Poisson and the geometric
Poisson distributions are apparently considered to
be essentially different by many investigators,
there is no difference when the initial conditions
of the demand processes are appropriately selected.

3. The negative binomial distribution, which is
frequently advocated as a demand distribution, is
interpretable as a compound Poisson disiribution
in most situations. Furthermore, there are several
microscopic demand models that can lead to over-
all demand distributions of the negative binomial
family. In accordance with the earlier discussion
of physical reasonableness, the appropriateness
of the negative binomial in describing a demand
process can be evaluated by determining whether
one of these microscopic models is a reasonable
source of demand.

In the remainder of this repori, a systematic analysis of demand
distributions will be presented. This analysis will establish not only the
results indicated, but will also consider demand distributions from a more

general point of view,



III. COMPOUND DISTRIBUTIONS

Iniroduciion

The largest class of probability distributions useful for the descrip-
tion of demand appears to be the class of compound distributions, These
distributions are capable of describing fairly general demand processes often
without & sacrifice of analytic tractibility. Simplicity in mathematical
analysis is most likely to exist where the demand process is of the generalized
Poisson family that is usually assumed explicitly or implicitly in the literature
ol inventory control. This chapter develops the theory of compound distribu-
uons. In Chapter IV the theory of recurrent events is developed as a foundation
for later chapters., Chapter V presents the theory of compound Poisson processes
as an 1mportant tamily of compound distributions. A second family of distri-
buitons that may be useful in ihe description of demand, the Erlang process, is

sugge stod n Chapter VI

Deveiovment of the Compound Disiribution and ics z-Transform

The process by which compound distributions are generated is
described as follows. Consider two independent random variables n and k
with Jdensity functions f(n) and g(k). The functions f(n) and g(k) will be called
the cuompounding and sampling distributions respeciively. The function g(k)
can have non-uzero values only for non-negative integers, k. The function f(n)
could have as i1ts domain any real number, but we shall restrict its domain to
the mtegers tor our present ci1scusswn.'l/ In accordance with the integral
domains of the compounding and sampling distributions it is possible for us to

chink o1 these distributions as probability mass functions rather than probability

1, The cxtension of the argument to the case where n can be a continuous
2 J
variable Lo developed in the appendix to this roport,
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H(z) =Z zMh(m) ,

m==00

G(z) =) 2Kgk) |, (3.4)
k=0

o0

F(z) =Z zn f(n)
n=-co
If we multiply both sides of Equation 3.3 by z™ and sum over all m, we

obtain

o0

h(m) 2™ =) g(K) 2% () (3.5)
) wmeme) b0 )

m=- k=0 m==00

Using the definitions given in Equations 3.4 and the fact that the z-transform
of the k-fold convolution of a probability distribution is equal to its z-transform

raised to the kth power we may write Equation 3,5 as

H(z) =Z a® [F( 15 . (3.6)
k=0

The definition of G(z) allows us to write Equation 3.6 in the form
H(z) = G [F(2)] . (3.7)

Equation 3.7 is our basic result, It shows that the z-transform of
the compound distribution may be obtained by taking the z-transform of the
distribution that determines the number of samples (the sampling distribution)
and replacing every z by the z-transform of the distribution from which the

samples are being taken (the compounding distribution).



The demand in a given time period is described by the compound
distribution, h(m), defined by Equation 3.3, or equivalently in transform terms
by Equation 3,7, if the number of customers that arrive in a time period, k, is
described by the density function g(k) and the number of units, n, that each
customer demands is independent of k and is governed by the density function
f(n). Although n, the quantity ordered by a customer, will usually be positive,
it can take on negative values if customers are able to return supplies previously

received but not used,

Moments of the Compound Distribution

The moments of the compound distribution may be related to the
moments of the sampling distribution and the moments of the compounding
distribution. To obtain this relation, let us recall that if ' we have a distribution
f(n) with z-transform F(z), the mean, n, second moment, nz, and variance, gﬁ ’
of f(n) are related to the derivatives of the z-transform F(z) at the point z=1 by

the equations:

A=dlE | -pq)
z
z=]

— 2

2 =Q_£§§L + .‘iéiié)_ = F(1)4F'(1) (3.8)

dz z
z=1 z= ]
and
. 3

oZ=n? - R2=Fo(1) + P'() - ('] 2

The mean, E, and variance,gxzn , of the compound distribution, h(m), may

then be obtained as follows:



H(z) = G [F(z)]

H'(z) = G'[F(2)] F'(2)

H'(1) = G'[F(1)] F*(1) . (3.9)
However,

F()=1 , (3.10)
so that we obtain

H'(1) = G*'(1) F*(1)
or
m=kn . (3.11)

Equation 3,11 shows that the mean of the compound distribution is
equal to the product of the means of the sampling distribution and the compound-

ing distribution.

For the variance, o’tzn . we first compute

H"(z) = <G'[P(z)] F'(2) }
= G"[F(2)] F'(2) * F'(2) + G'[F(z)] F"(2)
He() = G*(1) {(F*(1)] 2 + G*(1) F*(1)
= G*()n+ kF*(1) . (3.12)

The variance is given by:



o2 = Hr(1) + H'(1) — [H()] 2
= G*"()n2 +k F"(1) + k n — s
=l - k+ K2 nf+ K[f -+ 0]+ kn-k? A2

= n? g§+ k o2 (3.13)
We see from Equation 3. 13 that the variance of the compound distribution is
equal to the variance of the sampling distribution multiplied by the square
of the mean of the compounding distribution plus the variance of the compound-

ing distribution multiplied by the mean of the sampling distribution,



Iv. RECURRENT PROCESSES

Introduction

The previous chapter discussed the theory of compound distributions
because they are important models for the number of purchases in a given time
period. In this chapter we shall investigate, in detail, the time behavior of
demand processes. We are interested in counting the number of events that
occur in a given time peariod when the distribution of times between arrivals does
not vary with the passage of time. The results of the chapter show that the dis-
tribution of the number of events in a given time period depends on the definition
of the time interval over which the events occur. The basic theory underlying

the type of demand model we are discussing is the theory of recurrent events.

If we define the arrival of a customer to be an event, then for station-
ary processes where customer arrival times are independent we can define the
density function of the time between successive events, or the interevent time, T,
by a(t). By repeated sampling of the density function a(T) we can construct a
realization of the customer arrival process. An important statistic of this process
1s the number of events in a given time interval. To define this statistic precise-
ly it is necessary to specify how the time interval is placed with respect to the
occurrence of events. One way to define this interval is to say that it begins

immed ately after the occurrence of an event and lasts for a time interval t.

Counting from an Event

Let us define p(n, t) to be the probability of n events {n such a time
interval t. Tne number of events that occur in a time interval t following an
event will be n>1 {f the first event occurs at a time 7 (T~t) after the beginning

of the Interval, and n-1 events occur in the remaining time period, t-¥, which,

4 -1



of course, is initiated by an event. Since the occurrence of the first arrival at a
time T represents a mutually exclusive set of events for different values of T<t,
and since the occurrence of the first arrival at time 7T is independent of the occur-

rence of the remaining arrivals in the interval t-T, we may write

+
[3

p(n,t)=j a(r) pln-1, t-7) a7, n>1 . 4.1)

3

The probability that there will be n events in a time interval t beginning with an
event is thus the convolution of the interevent time density function, a(T), with

p(n=1,t).

Let us denote by P(n, s) and A(s) the Laplace transforms of p(n,t) and
a(r), defined by

X0

P(n,s) =\ pn,t)e St at=L [p(n,t)]

o

and (4.2)

A(s) =5 a(r) e *Tdr =L (7))
0

In the transform domain, the convolution of two functions becomes the product of

their transforms, and hence Equation 4.1 may be written as the difference equation

P(n, s) = A(s) P(n~1,s) , n>1 . (4. 3)
The solution to this difference equation is
P(n,s) = P(0,s) [A(s)]" n>l . 4.4)

It now remains to find P(0, s), the transform of p(0,t). No arrivals will occur in a



time interval t beginning with an event if the time until the next event 7 is greater
than t. Hence, we may write

[« ]

p(0,t) =Sa(f) dr
t

t
=1-§a(’r) dr . (4.5)
0

Taking the Laplace transform of Equation 4.5 we obtain

P(0,s) = - Al (4.6)
S [
Thus, we can write Equation 4.4 as
1 n
P(n, s) = [1-A(s)] [A(s)] n >0 (4.7)

Equation 4.7 yields the Laplace transform of p(n,t) for an arbitrary interevent time

distribution, a(r).

Counting from an Arbitrary Time

Although it is sometimes important to count events in a time period be-
ginning with an event, it is more often the case that we wish to count events begin-
ning with an initial time selected in a more general way. Let us suppose that count-
ing is started at an arbitrary instant such that the time to the next event, Ty has a
density function h(r 1) . This density function h{r 1) is generally different from the
interevent time density function, a(r). Let pA(n,t) be the probability that n events
will occur in a time interval t that begins at such an instant. Then by reasoning
similar to that used in obtaining Equation 4.1 we obtain

t
pA(n,t) .Sh(Tl) pin-1, t-'rl) d‘r1 , n2l . (4.8)
0



Equation 4.8 shows that the probability of n events in a time interval t starting
at an arbitrary point in time is given by the convolution of the density function for
the time until the first event, h('rl) , with the probability that n-1 events will occur
in a time t starting after an event. We define PA(n, s) and H(s) to be the Laplace
transforms of pA(n,t) and h(r 1) . Then Equation 4.8 may be written in the transform
domain as

Ppln,s) =H(s) Pln-1,5) , nxl . (4.9)

If we substitute the result of Equation 4.7 into Equation 4.9 we obtain

Paln,s) =< H(s) [1-A(s)] [A(s))™"} nzl (4.10)

Equation 4.10 gives the transform of the probability pA(n,t) forn>1. It remains
to find the transform of pA(O,t) . By reasoning similar to that used for Equation 4.5
we obtain
t
pp(0,t) = 1- Vh(‘rl) dr, . (4.11)
0
The Laplace transform of Equation 4,11 is

PA(O,S)S% 1-H(s)] . (4.12)

1f H(s) = A(s) the results of Equations 4.10 and 4.12 agree with Equation 4.7.

Counting from a Time Selected at Random

Perhaps the most important case of counting for recurrent processes
arises when the initial time is selected independently of the event process; a situ-
ation most often called starting “at random" in time. This way of starting the
process will imply a particular form of h(r 1) , the density function for the time until
the next arrival, and so is a special case of the arbitrary starting process described
above.

Let us define hR('r 1) to be the density function for the time until the first

4-4



event from a time selected at random, and let HR(s) be its Laplace transform,
Furthermore, let pR(n,t) be the probability of n events in a time t starting at
random, and let PR(n, s) be its Laplace transform. From these definitions and
Equations 4.10 and 4.12

SHp(s) [1-AE T [A®]™ !, nz1
Ppln,s) = (4.13)

Sh-H&] n=0

To find hR('rl) we first recall that the average time between events, T, is

given by
= d
T=-3s A(s) ' (4.14)
s
s=0
and therefore that the average event rate, A, is
11

If the starting point is selected at random, the next event will occur at a time
between T) and 7 + dT, if an event occurs in the interval d7) and if the time
between this event and the preceding event is greater than T1- Since the prob-
ability of an event in any short time interval is xd7), the previous statement in

probability terms is

4

hR('rl) d‘r1 = xd'rl{:Prob interevent time > 7,

| S

= AdT) \ a(r) dr
)
or
"1
ngtr) =ap1- ' amar (4.16)
0

4-5



Equation 4.16 is an explicit expression for hR('r 1) in terms of the interevent time

density function a(r). The Laplace transformation of Equation 4.16 is
A
Hp(s) =< [1-A()] . (4.17)

Finally, substitution of Equation 4,17 into Equation 4.13 yields

[’—"3 [1-A(s)]2 (A, nzl
1S

Prln,s) ={ . (4.18)
‘\s—lz [s-XA+XA(s)] n=0

Bivariate Transform

It is often useful to transform with respect to the discrete variable, n,
in our probability expressions as well as with respect to the continuous variable t,
i.e., it is useful for calculating the moments of the distribution of the number of

events in a time interval t. Let us define the bivariate transform Pb(z,s) of p(n,t) by
0 Q0
Pb(z,s) = z zns pln,t) e St at
n=0 0

o0

= Z 2" P(n,s) . (4.19)
n=0

For P(n,s) given by Equation 4.7 we have



o0
Pb(z,s)=z z" -i- [ 1-A(s) ] [A(s) ]n
n=0

0
) ‘
=< [1-A(s)] Z [2A(s)]"
n=0
- 1-Als) (4.20)
s[ 1-2A(s) ]
Similarly, we shall define Pi(z, s) and P:(z, s) to be the bivariate transforms of
pA(n,t) and pR(n,t) . From Equations 4.10 and 4.12 for pA(n, s) we have
o0
Pi(z,s)a-—:-[ 1-H(s) ] +z z" % H(s) [ 1-A(s) ] [Als) ™!
n=l
0
= _l;lsﬂ_s_)_ +Iié§)—[ 1-A(s)] z [zl\(s)]j
=0

- 1-1;!(5! + zH(s![ l-Ags“

s[ 1-zA(s) ]

‘l-Hgs[-zAgstH(s)
s[ 1-zA(s) ] (4.2))

For counting from a random time we can substitute Equation 4.17 for H(s) in

Equation 4.21



1-'2[ 1-A(s) ] - zA(s) + z'g[ 1-A(s) ]

b
Pp (z/5) = s[ -zA(s) ]

s-A + MA(s) - zsA(s) + zA - zMA(s)
sz[ 1-2zA(s) ]

(s=A + zA) + A(s) [ A-25-2A]

. (4.22)
s” [1-2A(s) ]

Use of the Bivariate Transform to Calculate Moments

The bivariate transform Pb(z, s) is an important quantity because it may
be used to determine all the moments of the distribution of the number of events
in time t. In particular, the Laplace transform of n (t), the expected number of
events in time t, is found by evaluating the derivative of Pb(z, s) with respect

to z at the point z=1. This is shown as follows

oc 0

Pb(z,s) = z z" S p(n,t)e” Stat
n=0 0
0 [¢ o]
% Pb(z,s) = z nzn‘-1 g p(n,t)e-Stdt
n=0 0
[ o] [
5§2_ Pb(z, s) = | st Z np(n,t)dt
= n=0
[> o]
= S n(t) e-St dt
0
=L [n()] (4.23)



For a recurrent event process starting after an event we may calculate

the Laplace transform of the expected number of events from Equation 4.20 as

9 Pb(z,s) =A§s![ l-AgsH
oz 2
s[ 1-zA(s) ]

nd
LIAW] = 2 Pz, 0) =B .

4=1 S[1-A(s)]

(4.24)

Similarly, for a process starting at an arbitrary time we may use Equation
1. 21 to obtain the expected number of events in a time t,ﬁA(t), as follows

% PX(Z,S) - H(s[[ 1-A§s[2] .
s[ 1-2zA(s) ]

- 8 b - H(s) .
L(n,(0] = 5P, (z,5) oy STI-AG] (4.25)

Finally, to calculate the Laplace transform of the expected number of

“vents in a time t for a process starting at random, ER(t), we substitute HR(s) from
Etuation 4.17 into Equation 4.25 to obtain

- A
Lng®] =73 (4.26)
If we take the inverse transform >f Equation 4,26 we find that
ER(t) = At . (4.27)



Eqguation 4.27 is a particularly important result because it shows that the expected
number of events in a time t starting at random is equal to the product of the
average event rate, A, and the time interval t and thus depends only upon the
mean of the interevent time distribution.

This chapter has summarized the theory relevant to the counting of
recurrent events with particular emphasis on the importance of the starting point
of the period. This theory will be utilized in discussing the compound dis-

tributions used to describe demand.
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V. COMPOUND POISSON

Introduction

The compound Poisson distribution is a family of compound distribu-
tions of special importance in inventory control theory. In this chapter we
shall develop the properties of the compound Poisson family and show how such
commonly used distributions as the stuttering Poisson and negative binomial
may be interpreted as compound Poisson distributions. Finally, the ppint is
made that the assumption of independent demand in independent intervals,
common in inventory analyses, implies a demand distribution of the compound

Poisson type.

The Reqular Poisson Process

The Poisson process may be described as a recurrent event process

where the interarrival time distribution, a(t), is exponential in form,

alr) =ae™>™ (5.1)

The Laplace transform of this distribution is

A(s) =-s-;’=; : (5.2)

We are interested in the number of customers that will arrive in a time t,
Chapter IV shows that this probability generally depends on the placement of
the time interval. In particular, Equation 4.7 gives the Laplace transform of
the probability that n customers will arrive in a time t following a customers'
arrival, p(n,t). Since we are dealing with a Poisson process we substitute
Equation 5.2 into Equation 4.7 and write

n
Pn,s) s (l—s'l-l)(s'rl

An
= n>0 . (5.3)

(S+»n+1
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Finally, inverse transformation yields

n -it
p(n,t) =(£t)—r-1e!—— . (5.4)

Equation 5.4 is an expression for the probability that n customers
arrive in a time t following an arrival of a customer., If counting is begun at
random then Equation 5,2 must be substituted into Equation 4.18 to yield
PR(n,s), the transform of the probability that n customers will arrive in a time

t following a point at random; the result is

.A. 1- A 2 l n"l
g2 s+ s+
P (nls) = i n> 1 .
R 1 A2 -
.2 (S—l*’ s+ , n=0 ,
or
2 (5.5)
P.(n,s) = ———— . n>0 . 5.5
R (s+7t)n+1

Note that Equation 5.5 is the same as Equation 5.3 and therefore p(n,t) = pR(n,t),
and we obtain the same probabilistic behavior of the process for both event-

determined starting times and random starting times.

The bivariate transform of p(n,t) = pR(n,t) is given by

[2e]
n
Pb(z,s) = P:(z,s) =Z 2" —A—n+_1-
n=0 (s+A)

fo.o]

s+A =o S+
1} 1
s+l‘1__z_)§

st+A

n

-z (5.6)



Definition of the Compound Poisson Process

The compound Poisson distribution arises in a demand situation
when customers arrive at random according to a Poisson process and then
purchase a number of units, n, governed by a discrete density function, f(n),
The probability that k customers will arrive in a time t if the average customer

arrival rate is A is obtalned from Equation 5.4 as
k -t
A
gl =Me— (5.7)

The number of purchases, m, that will be made in a time t is then governed by
the compound Poisson density function determined by the Poisson sampling

function, g(k), and the arbitrary compounding distribution, f(n).

According to Equation 3.7 the z-transform of the compound distribu-
tion, H(z), is related to the z-transform of the sampling distribution, G(z2),

and the z-transform of the compounding distribution, F(z), by
H(z) = G[F(2)] . (5.8)

The z-transform of the Poisson sampling distribution is obtained using

Equation 5.7 as

X Nl
k
G(2) =Z g(k)zk -e At Z (7;;:;1 - e-At . extz
k=0 k=0

or

e-ht(l-z)

G(z) = . (5.9)

Therefore, for an arbitrary compounding distribution f(n) with z-transform F(z),
the z-transform of the compound Poisson distribution of purchases, H(z,t), is

gi b
iven by H(z,0) = e-n[l -F(2)] . (5.10)



The Regenerative Property of the Compound Poisson

Many interesting properties of the compound Poisson distribution as
a demand model may be derived from Equation 5.10, Suppose, for example,
that we have one compound Poisson demand process with customer arrival rate A,
and a compounding distribution of individual customer purchases, f 1(n) . whose
z-transform is given by Fl(z) . Suppose also that we have a second compound
Poisson demand process with corresponding properties lz, fz(n) , and Pz(z).
If the processes are independent, then the z-transform of the probability density

function of the total purchases in time t is given by
H(z) = H (2) H,(2) = e MHI-F @) -2t[1-F@] oy

Let us investigate under what conditions Equation 5,11 also

represents a member of the compound Poisson family. We may write Equation 5.11

in the following way

Al /\2
H(z) = exp -()L1+).2)t 1 T Fl(z) o Fz(z)]§ (5.12)
. 172 172
or
H(z) = exp \-()«1+Az)t[1-f‘(z)]% . (5.13)
¢

We see that Equation 5,13 represents a compound Poisson process with a
customer arrival rate equal to the sum of the rates of the two original processes
and with a compounding distribution whose z-transform, F(z), is the transform
of the sum of the two original compounding distributions, weighted by their
respective arrival rates; that is,

A A
F.(2) +
ll+12 1

F(z) = FZ(Z) . (5.14)

2
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Therefore we have shown that the sums of compound Polsson processes are

compound Poisson processes,

A demand model for which the result expressed by Equation 5, 13
is relevant is the model for the physical situation where two groups of
customers with different arrival rates and purchasing characteristics purchase
the same item. For example, destroyers and aircraft carriers will have quite
different arrival and purchase characteristics for certain types of vacuum

tubes.

Moments of the Compound Poisson Distribution

The moments of the compound Poisson distribution are easily
obtained from the results of Chapter III. The mean and variance of the number
of customer arrivals in a time t for the Poisson sampling distribution of

Equation 5.7 are

= 2

k = ok"lt . (5.15)
The mean number of purchases in time t, r_n, is obtained from Equation 3,11
as

m=an (5.16)
while the variance is given by Equation 3,13 as

2

) 2
Sm n At+ ltgn

= At (n2+ ci)

= At n2 (5.17)



We thus see that the mean and the variance of the compound Poisson distribu-
tion are proportional to only the first and second moments respectively of the

compounding distributions,
A parameter that is often used to describe demand distributions is the

variance-to-mean ratio, R , defined by

R= . (5.18)

a
s||a~

If we use Equations 5.16 and 5.17 we see that for the compound Poisson

n2
R="= . (5.19)

We shall now show that the variance-to-mean ratio for the compound Poisson
must be greater than or equal to one, if nis positive, The first and second

moments of the compounding distribution are defined by

;1 = z nf(n) ¢ (5.20)
n=-x
and o
Ze ) ol (5.21)
n==w

Consider the difference n2 -n. We may write



o0 0

3-ﬁ=z nzf(n)- 2 nf(n)

n=-=900 n=-00o

0

=z (nz- n) £(n)

n=-o0

w0
bl

= Z n(n- 1) f(n) (5.22)

n=-

Since the product n(n~- 1) is always greater than or equal to zero for any integral

value of n and since f(n) can never be negative it follows that

nZ—EEO
nzz’n' ‘.

and finally, since nis positive by assumption, we find from Equation 5.19
R>1 ., (5.23)

This completes our discussion of the properties of the compound
Poisson distribution. The sections following describe certain special members

of the compound Poisson family that have been suggested for demand models.

The Geometric Poisson and the Stuttering Poisson Distributions

Introduction

Two distributions that are often used for describing demand in
inventory systems are the "stuttering” Poisson and the geometric Poisson

distributions. It is of interest to examine the exact interrelationship between



these distributions in order to determine how results of analyses based on one
of the distributions may be modified to be applicable to systems analysed using
the other,

The stuttering Poisson distribution refers to an arrival process where
interarrival times are exponentially distributed except that there is a finite
probability of a zero interarrival time represented by an impulse at the origin
of the interarrival time density function. If we consider each arrival as a
single demand on the system, then the impulse in the interarrival density function
will cause a "clumping" of arrivals and hence a clumping of demand that would
not be present if an interarrival time of zero had zero probability. (The simple
Poisson process is this special case of the stuttering Poisson.) As a result the
stuttering Poisson is sometimes a useful model for systems where multiple orders
can occur,

The distribution allows clumping of orders in a conceptually different
way. For this distribution the interarrival time density function is a pure ex-
ponential, but each arrival when it occurs generates a demand by sampling from
a geometric distribution. The question arises as to how the clumping of demand
caused by this distribution differs, if at all, from that caused by the stuttering
Poisson.

Analysis

To examine this question let us examine each distribution in more
detail, beginning with the stuttering Poisson distribution. For the stuttering
Poisson, the interarrival time, 7, is zero with probability p and is selected

BT

from a density functionp.e- with probability 1-p, so that a(7), its density

function, ic given by

alr) = ps (1) + (1-p)pe™™ (5.24)



where 5 (1) represents a unit impulse at v=0. The Laplace transform, A(s),

of this density function is then

A(s) = p + 0Bl (5.25)

S+y,

The mean arrival rate is given by Equation 4.15 as

1
ATCRO
and hence
A= T .
l1-p :

The probability that n customers will arrive in a time t beginning
with an arrival has a bivariate transform, Pb(z,s) . 9lven by Zquation 4,20 using
the A(s) from Equation 5.25 above.

b -—>lp

P (z,s) stp- sz -pz (5.26)

If p is chosen to be zero then the stuttering Poisson distribution becomes the
regular Poisson distribution with arrival rate y, for which P(z,s) = 1/(s+u-pz),
as indicated by Equation 5.6. Equation 5,26 is thus verified for this particular

case,

The Laplace transform of the expected number of demands in a time t,
n(t), is obtained by using Equation 4,24,
!
- (1-R) -

s[1-A(s)]
z=1 (5.27)

and inverse transformation yields

A = I%H» f‘ip‘ ) (5.28)



The expected number of demands in time t therefore has a component
that increases linearly with time at a rate p/(1-p) which is, as we found earlier, .
It also has a constant component, p/(1-p), so that the expected number of
purchases in time zero is equal to p/(l-p)., This is a disquieting feature of the
stuttering Poisson, but let us proceed to our examination of the geometric Poisson
before considering this fact further. If the geometric Poisson also has a hivariate
transform P(z,s) given by Equation 5.26, then it will be equivalent to the
stuttering Poisson as a demand distribution, If it does not, then we shall have

to understand the difference.

The geometric Poisson distribution is a member of the general compound
Poisson family. The geometric Poisson is a compound Poisson distribution where

the compounding distribution f(n) is given by the yeometric distribution
n-1
(@) = (1-p)p n> 1
0 otherwise ,

Note that each arrival must create at least one demand. The generating function

F(z) is obtained using Equation 3.4 as

F(z) = Z fn) "= Z (1-p) "7 2" = -%-'-2)-2 . (s.29)
n=0 n=1 -pz

If we assume that the Poisson sampling process has the average arrival rate y,

then Equation 5.10 can be written as
Hz,p) = e Ht{1-F(2]

and for the compounding distribution of Equation 5,29 we find

_fl—g)z
H(z,t) = e'-"n[1 lI-pz J

l-2
L S B (5.30)



The bivariate transform Pb(z, s) of p(n,t) is given by

PP(z,s) = LH(z,0] (5.31)
and so
b _ 1 _ l-pz
P(z,s) = l-z  s+u-szp-pz (5.32)
'.=,+'.,L1

Membership of the geometric Poisson distribution in the compound Poisson
family makes it unnecessary to specify whether the time interval during which
arrivals are counted is begun after an arrival or at random, in accordance with
the following reasoning. Because the sampling distribution for a compound
Poisson process is the simple Poisson process, it is invariant to counting
beginning at random or after an event, as shown earlier, Since the probability
of n demands in time t depends only on the sampling distribution and the time
invariant compounding distribution, the counting interval for compound Poisson

process may be begun after an event or at random with the same result.

The quantity Pb(z,s) as given by Equation 5.32 again reduces to the
bivanate transform for the simple Poisson distribution when p=0. Notice that
the denominator of this expression is the same as that of Equation 5.26;
however, ithe numerator is different. Let us compute the expected number of
demands in time t for the geometric-Poisson using Equation 4.23 and Pb(z,s)

as given by Equation 5.32. Thus,

- _ b _ 9 ! l-pz u/(1-p)
L =& pP(,, = —9——) = , (5.33
n(t)] Py (z,s) - oz lSﬂ“SZP‘HZ - 2 ( )
and
A= £ ¢ (5.34)

l1-p

The expccted number of arrivals in time t for the

distribution has the same linear growth term y/(1-p) = A, as that for the
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stuttering Poisson given by Equation 5.28; however, it does not have the
constant term p/(1-p). Since we would not expect this constant to appear on
physical grounds, we may ask if we can modify the stuttering Poisson to
eliminaie this term. Perhaps when this is done Pb(z,s) and hence p(n,t) will

be the same for both distributions.

The difference between the distributions is apparently caused by
the finite probability of purchase for the stuttering Poisson at i=0. If this
were eliminated by requiring that the first arrival not be instantaneous, then
it is possible that the two distributions would agree. The finite probability of
arrivals in an interval of zero length is in fact caused by beginning the
counting process after an arrival occurs. One way to eliminate this difficulty
is to begin the process at a random time. If this is done then pR(n,t), the
probability of n arrivals in a time t beginning at random, has a bivariate
transform given by Equation 4.22 rather than by Equation 4,20. If we use
A(s) as defined by Equation 5.25. then

b _ 1-pz
PR(z,s) = St~ szp-pz . (5.35)

in complete agreement with Pb(z, s) for the geometric Poisson as given by

Equation 5.32.

Thus we have shown that if we are interested in demand generated
during a time period beginning a. random, the stuttering Poisson and the

geometric Poisson are identical.
The Negative Binomial Distribution
Introduction

The negative binomial distribution has often been suggested as a

model for demand processes. This section will show how several differeni
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probabilistic models will lead to a stochastic process governed by the negative

binomial distribution.,

Distribution of First Success in a Sequence of Bernoulli Trials

The first model we shall discuss is based upon a sequence of
Bernoulli trials. Suppose that we have such a sequence with probability of
success, p, and probability of failure, g=1-p. Let f(k;r,p) be the probability
that the rth success will occur on trial r+k. Then f(k;r,p) is also equal to
the probability that k failures will take place in r+k-1 trials and a success will

take place on the (r+k)t trial. It follows then that f(k;r,p) is given by

r+k-1 -1 k
f(kir:P) =‘ k . Pr q -p ‘ k=0 , (5-36)

or

f(k;r,p) = K/

With some manipulation, Equation 5.37 can be placed in the form ofien seen
for the negative binomial distribution. To see this let us investigate the

combination of a objects taken b at a time. By definition, we have

‘a al _ afe-1)...(a=btl) arb
b = bl@Bl bl (5.38)
0 a<b orb0,
We may replace a by -a and extend the definition to obtain
_ —af(-a-1),..(-a=-bt+l)
Bl bl
vb
b afatl),..(atb-1)
= (-1)
bl
+b-1
-1P \as . (5.39)
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or

+b-1 b -
a+b (-1) a

p = b (5.40)
Using Equation 5.40 we may rewrite Equation 5.37 as
£:r,p) = (-)F e P < . (5.41)
Finally, we obtain
f(k;r,p) = /;’ O L (5.42)

Equation 5.42 represents a commonly used form of the negative binomial
distribution; it is the form responsible for the name of the distribution. We
have seen that f(k;r,p) may be interpreted as the probability that in a sequence

th success will occur

of Bernoulli trials with probability of success, p, ther
on the (r+k)th trial. An interesting special case is the one where r is set
equal to 1; then, f(k;1,p) is the probability that the first success will occur

on trial k+1, This quantity is given by

f(k:1,p) = pq® k=0 . (5.43)

We recognize Equation 5.43 as the expression for the probability density
function of a geometric distribution., Note that this geometric distribution has
a non-zero probability for the value k=0, unlike the geometric distribution
discussed above. Let us define F(z;r,p), the z-transform of the negative
binomial distribution, by

~

Flzr,p) = Z X tkir,p) (5.44)
k=0
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Then for r=1 the z-transform i{s given by

o0,

Flz:l,p) = / 2* pg¥= T-E—-q—z . (5.45)

k=0
Now that we have the z-transform of the geometric distribution, we can find its
mean and variance. Its mean is given by the derivative of its z-transform at
the point z=1. Let us denote the mean of the negative binomial by k@, p), its
second moment by k2 (r, p) and its variance by ci(r, p). Then using Equation

5.45, we have

E(l,p)-‘-ad; F(z;l,p) =4¢/p ., (5.46)
z=1
2 q° ' - 2g%+
k“(1,p) =55 Fl:l,p)  +k(,p) ==L (5.47)
dz lz=1 p
and
2 2 - 2
) = k2, p) - (R, 2] 2 = o/ (5. 48)

as the basic moments of the geometric distribution.

Let us now find the z-transform of the general negative binomial.

Combining Equations 5.37 ard 5.44, we obtain

i“I
F(zir, p) "Z 2* <r+k-9 P, (5.49)
k=0 k
or
t\“ Ve
T Ttk-1 k
F(zir,p) =p 2 N K )(qz) . (5.50)
k=0

To obtain F(z;r, p) let us examine the following relations. From the binomial

theorem we have
LM

@+b)" = >\ m gl (5.51)
j;O\J/
‘o
Recall that ;"as defined by Equation 5.38 is zeio for }on and j<0. If nis replaced
by -n the binomial theorem is defined by
C <]

(a+b)~D =Z. (—n) d—n—j bj . (5.52)
= )



Equation 5,39 allows us to write Equation 5.52 in the form

[S9)

(a+b) " =Z"“*J?’1 a iy (5.53)
=0

If in Equation 5.53, we take a=1, b=-qz, n=r, and j=k, then the result is

0

+ — -
z Xl @) = (e, (5.54)
k=0

and thus F(z; r,p) may be expressed in closed form by

T
F(z3r,p) =(l—-q%)r- . (5.55)

We have obtained in closed form the z-transform of the general negative

binomial distribution,

Distribution of the Sum_of Samples from a Geometric Distribution

It is informative to write Equation 5.55 in the form

F(z:r,p) = [F(z;1,p)]" (5.56)

by using Equation 5.45, We see that the z-transform of the negative bonomial
distribution can be expressed as the rth power of ihe z~transform of the
geometric distribution, It follows that the negative binomial distribution with
parameter r may be interpreted as the distribution of the sum of r independent

samples from the geometric distribution expressed by Equation 5,43,
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The moments of the negative binomial distribution are calculated

from its z-transform as follows:

k (r,p) =£' F(z;r,p) =r{g/p) (5.57)
z=1
D 2 2 2.
d -
k*(r,p) = — Flar,p) + k{r,p) =" °‘2+;q *oq . (5.58)
dz p
z=1
and
2 - —é ™ 2 _ /2
Tk (c,p) = k°(c,p) - (k(,p)] " =rl(g/p°) . (5.59)

We see that these results not only agree with those of Equations 5.46,
5.47, and 5.48 when r=1, bu: also that they support our contention that the
negative binomial distribution may be interpreted as the sum of independent
samples from the same geome:ric distribution. Thus, the mean of the negative
binomial is r times the mean of the underlying geometric distribution, while

the variance of the negative binomial is r times the variance of the geometric.

We have now obtained two completely equivalent expressions for
the negative binomial distribution given by f(k:r,p). First, it represents the
probability that in a scquence of Bernoulli trials with probability of success p,

the r'! success will occur on the (r+k)t:h

trial. Second, it represents the
probability that the sum of r independent samples {from a geomeiric distribution
wi.h parameter p will take on the value k. Let us now proceed to another

process that gives rise to a negative binomial distribution.

Poisson Demands with Erlang Arrival Rates

Suppose that the demand for a produc. in a given time interval of
length t is Poisson-distributed with mean rawe A. Then the probability of n

demands in the period, d(nlat), is given by
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n_ -t
. A e .
dnjay = (g . {5.64)
nl
Suppose furcher that tne demand rate, A, in successive panods of lencth t
1s determined by independent samples from the density function g(A) definedi

hy

kok-1 =kn
) = (ki) A e T ‘ e ) ¢ - L $
ey Y O, (5 .61

That 1s, the demand rates from veriod .0 pertod 2ie chosen {rom a k 3shess
Erlany diswibuilon witn mean 1 o course, 65 k hecomes infinie gi{A)
tends to a unit impulse ay . and che demand precess will be a simpis
Poisson witil mean rate A = ": in each veriod, Le. d(n,d be the nrobabiny

chat n units are demanded in 8 given peniod of iength ¢. Then d(n,t) is given

vV
- < i o kok-1 ~kMu
N Aled aeh - 00" e (kg 2" e .
a3 = | a]a g are {0 B e aA, (5.60)
[}] 0
or g
k - - _(tt+kp
dln,y = —ABy © qari-l 65 oo (5.¢3)
n!(k-l)!t J
0

Using tne gamma function integral expressed by

(=
ﬂ a4

m -ax + I:I I
3 X e dx = = -

m+ i I (5 oL -3)
a a
Y]
we orta.n
din,) = (L] X (ntk-1)! ok
AT T nlk-1) 1 ek (t-'k;n)"”"

_ nh+k-l e " kyt k .o
- n t"'m f+ku . ~ee v



Comparison of Equation 5.65 with Equation 5,37 shows that the number of
demands in a time interval of length t is given by a negative binomial
distribution, The parameter r of the negative binomial is the number of
phases, k, in the Erlang distribution; the probability of success, p, for the

negative binomial is given by t—_-'_)-‘]#‘— . Thus we have

_kL)

d(n,t) = f(n; k, t+kp

. (5.66)

We have thus shown that if demand in successive time intervals is
Poisson with mean rates selected as independent samples from the Erlang
distribution, then the number of demands in a particular interval will be
distributed according to the negative binomial distribution. Such a distribution
could arise in the Navy Supply System, for example, if the number of ships
in port at any particular time followed the Erlang distribution, and each ship
generated demands according to the same Poisson distribution. The total
quantity demanded of the Navy Suppiy System would then be distributed according

to the necative binomial distribution.

The Negative Binomial as a Compound Poisson

Still another model of the negative binomial is based on the compound
Poisson distribution. Suppose that arrivals are governed by a Poisson process
witn mean rate A and that when each arrival occurs demand is generated as a
sample from a discrete distribution f(n) with z-transform F(z). From the theory
of the compound Poisson distribution developed above, we have from Equation 5.10

that the z-transform of the number of demands in time t is

-at[1-F(2)]

H(z,t) = e (5.67)
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1l the compound Polsson demand {s to be governed by a negative binomial
distridution with parameters r and p, then its z-transform must also he given

oy Fyuation 5.55. Hence, :f we set Equailon 5.55 equal to Equation 5.67 we
mey suive for F(z) , the z-transform of the required compounding distribution,

Thus, we wiite

~Ai[ 1-F(z ¢ o

oMM @} B (5.68)
l-\.Ia

and solve for F(z). Inversion of the z-transioim t'(2) will then yield the analyuc

exgression jor the compounding Jdistribation required in the compound Poisson

50 thart total demand wilii be given by ihe neaative binomias aisiribution,

Proceeding algebraically, we obtain
-Ati1-F(z)] =rin p-rln(l-gz)

S -
1-F(2) At .x.p+ht In(l-q2)

. { - T
y + = lnp - — In(l-qz . 5.69
F(2) =1 R e n(l-qz) {8.69)
Using the logarithmic exparnrs:on
T'o.on
“in(l-) = /=, (-1 (. 70)
n=1

we may rewrite Equauion 5.£9 as

- b N n
I 0. 71

r
T(.;)= l.l\l- l:‘.g:‘V‘At - n
n= |



The z-transform of the compounding distribution is in a particularly convenient
form as it is given by Equation 5.71. Since F(z) is related to the compounding
distribution f(n) by

5]

F(z) =Z 2" f(n) (5.72)

n=0

identification of the terms of Equations 5.71 and 5.72 allows to write an explicit

form for the compounding distribution as follows:

£0) =14+ = 1np

Xt
f()=—r-93 n>1 (5.73)
PEX n ‘ =" :

Thus, a compound Poisson distribution will produce a demand governed
by the negative binomial distribution if the compounding distribution is of the
so-called "logarithmic" form. We see from Equations 5.73 that there is a finite
probability, 1 + irt— 1In p, that no demands will be made when an arrival occurs.
1f we would like to require at least one demand from each arrival, then £(0) must

be made equal to 0. This can be accomplished by setting

e-).t/r

p= . (5.74)

Of course, it is required that f(0) never be less than 0 or greater than 1,

Thus, we may write

r
+-— .
O<l+5=1Inpsl (5.75)

which may be written as

e')“/r_<_p51 . (5.76)
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Suppose now that one wished to represent a negative binomia
process with parameters r and p by means of a compound Polsson process
with Poisson rate A . Equations 5.73 show how the nompounding distabution
should be chosen as a function of the observation interval, t , and the given
parameters, Howcver, it will not always be possible to find a compounuing
distribution for arbitraryr, p, A, and t pecause t/3) may be negative. To
insure that tnis is pot the case, r, p, A, aau t must meet the requii-ineany
imposed by Equation 5.76, Since tor given r, p, and A, Equation 5.7t cac
always be satisfied by taking t sufficienily large, we can say that an
arbitrary negative binomial distribution can be represented by a .-umpounn

Poisson distribution with an arbitrary Poisson raze.

Let us find the moments of the compounding distribution 2iven Uy

Equations 5.73. Its z~transform may be written from Equation 5,69 as

r/At

F(z) =14 In 1—_??2 . (5.77)

If we refer to the mean, second moment, and variance of the comvounidiag

2

distribution by n . n°, and ‘Jﬁ , we obtain

- dF(z T
n= s i /'
PAEY
= d°r(a) - 2
n® = ) +n=— q/p (2,76
dz At
z=]

2 2 -2 _ 1 q
' =nf-u A—t:T“ )ul

-~ . . 2
The mean, m, and variance, “m?® of the compound Poisson istribuaae -

determined by the momen.s of the compounding distributlion as snown .
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Equations 5.16 and 5.17. We find

5=Atﬁ=xt§§;= /p (5.79)
and
2 = n =xtft- —qz— =£§2L (5.80)
p p

Comparison of Equations 5.57 and 5.59 with Equations 5.79 and 5.80 show that
the compound Poisson distribution constructed according to Equation 5.73 has
the same mean and variance as the original negative binomial distribution,

Indeed, the two distributions will be identical in every respect.

Summary

We have now shown four possible ways in which the negative
binomial distribution could be generated.
1. As the probability of obtaining the rth success on the
(r+k)th Bernoulli trial,

2. As the probability distribution of the sum of r
independent samples from the geometric distribution,

3. As the distribution of total demand where demand
in a particular time interval is Poisson but where
the Poisson demand rate is chosen from interval
according to an Erlang distribution.

4. As a compound Poisson distribution where the
compounding distribution is logarithmic in form,
Other models are no doubt possible; however, it would be worthwhile
in any inventory situation in which a negative binomial demand is experienced

to see if one of these four models can explain the underlying phenomenon.

This chapter has described the general compound Poisson distribution

and important members of the family of such distributions. We have seen two



examples in which different mathematical models have led to the same observed
demand process. The compound Polsson family is particularly important because
it 1s the only family of discrete distributions that satisfies the assumption of
independent demands in arbitrary independent time periods., That is, it is the
only discrete distribution that satisfies

pln,t) = i p(m,7) pla-m, t-1) 0<r<t & (5.81)
m=0

This assumption is frequently made in inventory theory, often without the

realization that it implies the compound Poisson demand process.,

1/ See Feller, W., An Iptroduction to Probability Theory and Its Applications
Volume I, Second Edition, Wiley 1958, pp. 270 - 272,
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VI, THE ERIANG DISTRIBUTION

Introduction

An important recurrent process is that in which the density function
for the time between events, a(v), 1s the Erlang distribution defined by
Equation 6.1,

-kt
a(-r) = kh(kA-Tgk_ 1) l . 1-_)_0 . (6. 1)

The Erlang density function has two parameters k and A. The quantity k may
be inteyral or non-integral; when it is non-integral the factorial in Equation 6.1
must be replaced by the corresponding gamma function. Without loss of
generality we shall consider k to be integral in which case the Erlang distri~
bution can be considered to be the density function of the sum of k independent
samples from an exponential distribution with mean k; . It then follows

that the mean of the Erlang distribution must be given by < X! and its variance
bsz . Ilf we compare Equation 6.1 with the Poisson density function,
Equation 5,4, and the Laplace transform of the Poisson density function,Equation
5.3, the Laplace transform of the Erlang distribution can be written by inspection
as

k
Als) = [;f—%] (6.2)

If we substitute Equation 6.2 into Equation 4.7 we obtain the Laplace transform

of the probability that n events will occur in a time interval t after an event as

o =4 [1- (5] ] )™

, n>0 . (6.3)




We must now invert this transform to obtain an explicit expression for p(n,t) .

To perform this inversion, let us consider the truncated exponential

function, En(x), defined by

E (4 =" i £, 20 . (6.4)
j=0 j!

This function is discussed and tabulated by Morse-l/. We shall now find the

Laplace transform of En(x) . We first write

exEn(x)= =, n>0 . (6.5)

and then

J
L[e*E_(] =i L[%] =§ i —1J—

n>0 . (6.6)

However,

LE (0] =L [exEn(x)] a= el (6.7)

1/ P.M. Morse, Queues, Inventories and Maintenance, Wiley, New York, 1958,




and so

1 1
LE ()] = [1—(s+1)“+1:‘ . n>0 . (6.8)

We have thus obtained the Laplace transform of the truncated exponential
function defined by Equation 6.4. If the truncated exponential function should
be written in the form

ax 1
E (ax) = e i faxf (6.9)
n =0 j!

where a is a constant, then we can find the corresponding transform by

making use of the Laplace transform property

sms/a (6. 10)

1
L[En(ax)] “a L[E“(xnl
By using the results of Equations 6.8 and 6.10 we can finally write
1 at!
L[En(ax)] = 1-——— | n>0 . (6.11)
(s+a)

We can now proceed to the inversion of the transform expression in
Equation 6.3. From Equation 6.3 with n=0 we obtain the transform of p(0,t),
the probability that no events will occur in time t, as

k
1 kA
P(O,s)=-; [1 _(.;+—10J ] . (6.12)

Comparison of Equations 6.11 and 6.12 then shows that p(0,t) must be given by

-1
-kt i .Osjhls).j.
=1

PO =E |, (ka)=e (6.13)



When n is larger than ', w+ & .te Lguation 6.3 in the form

lkh\k- kA ) Tk

s Tlstka] STRA¢
1 ks g,y Dk
== f ! oy
S \.:"”kN \)’H(A.,
RS T S G W (6.14)
S s+kA s 'stKA | : *

If we use Equation €.11 we can write p(n,t) the inverse transform of P(n,s) as
Pt = Ep gy oy KA -E ) kA n>! . (6.15)

Equation 6, 15 may be written in the form

[(ntl)k-1] j
pln,t) = 'kN Z i%)— L kM L (6.16)
and finally, in the form
[(n+Dk-1] .
p(n,t) = e_kM Z —0%)—]- . n>0 . (6.17)
j=nk

The expression for p(n,t) given by Equation 6.17 is valid for all n greater
than or equal to 0.

We have thus obtained an explicit expression for the probability
that n events will occur in a time interval t following a given event for a
recurrent event process with an Erlang interevent time density function. We
may provide an important interpretation for this expressionwhenwe note that

the truncated exponential function defined by Equation 6.4 is equal to the

b o~ -l



probability that a sample from a Polsson distribution of mean x will be less
than or equal to n. To use this fact, we shall build the following model of
the process under consideration., Let us imagine a sequence of recurrent
events which we shall call blips. The interblip time density function is
exponential writh mean k—l—x; consequently, blips are generated by a Poisson
process of rate kA, If we say that an "event" occurs at every kth blip then
the events will Le a recurrent process with the Erlang interevent time density
function ot Equation 6,1, The probability that no event will occur in a time
interval 1 foliowing an event is the probability that the number of blips in the

time 1interval o will be less than or equal to k-1, Since the mean number of

blips in time t is k At, Equation 6,13 is verified immediately.

The probability that there will be exactly n>1 events in a time
interval t, following a given event, is the probability that the number of blips
in this time interval will be greater than or equal to nk, but less than or equal
+~ (n+1)k~-1. It is thus equal to the probability that there will be (n+1)k-1 or
fewer blips less the probability that there will be nk-1 or fewer blips, This

relation is expressed exactly by Equation 6.15,

Now that we have verified our results, let us obtain some other
properties of the Erlang process. Let P(r,t) be the probability that r or fewer

events will ocour in the time interval t. Thus P(r,t) is defined by

P(r,t) =Z p(n,t) . (6.18)

n=0



Equation 6.17 allows us to write
[(n+l)k-1) |
P(r't) -i e—klt ML_
n=0 jznk j l

[(n+1)k-1]
o kAt kAt

n=0 J=nk

[(r+1)k-1]
- okt (kat)

= !
=0 )

=B yro KM >0 . (6.19)

The cumulative probability of events is thus also given by a truncated exponential
function. Once more, the physical interpretation is clear., The probability that
there will be r or fewer events in time t is just the probability that there will
be (r+1)k-1 or fewer blips in time t.

An expression for the expected number of events in time t,n(t), is also
easily obtained. This quantity is defined by

0

A =Z np(n,0 . (6.20)

n=1

Equation 6.20 can be written in the form

n(t) =Z p(n,t) i 1=>‘ ip(n,t) . (6.21)
m=1

n=1 = n=1lm=1



By reversing the order of summation we obtain

0w o : =1
;l(t) “Z Z P(n:t) Hz i1 "Xp(not) }
Lo

m=1 n=m n=0

BZ (1-P(m-1,1)]

=1

=n>1;£1- Emk_l(klt) ] . (6.22)
Thus, an expression for the expected number of events in time t is obtained
not in closed form but as an infinite summation of terms that are tabulated as
the probability that a sample from the Poisson distribution will exceed a
specified value. Recall that if sampling were begun at random, the expected

number of events in time t would be simply At, as expressed in Equation 4,27,

The second moment of the number of events in time t after an event,
n? (t) is calculated in a similar fashion., The defining relation is

n2(t) =Z n p(n,t) . (6.23)
n=1

Proceeding as before, we write

_ [} n' Q0
nZ(t) =2 pln,t Z (2m-1) =Z i(Zm-l) p(n,t) . (6.24)
n=1 m=1 n=1m=1



The same change in order of summation yields,

n—z-(t)= i(Zm-l) i pln,t)
m=1

n=m

00 . -1 !
= Z (2m-1) |1 - §_p(n,t)}
m=1

n=0

= Z (2m-1) [1 - P(m-1,t)]
m=1

= Z @m-1) [1-E_, , Gkx)] . (6.25)
m=1

The expression for the second moment of the number of events in time t after
an event involves summation over the same tabulated terms required for the
calculation for the first moment; however, these terms are now weighted by an

additional factor.

An interesting compound process results when the sampling process
is the recurrent Erlang that we have been discussing., In the compound process
at each event time some number of hyperevents determined by a compounding
distribution also occurs, For an arbitrary compounding distribution it is quite
difficult to determine the probability that a given number of hyperevents will

occur in a time interval t. However, the mean and variance of the number that



will occur can be calculated by knowing the first and second moments of the

compounding distribution and the first and second moments of the sampling

distribution. These latter quantities are given for the compound Erlang

distribution by Equations 6.21 and 6.25 respectively. Consequently, with

some numerical effort the important moments of a compound Erlang distribution
can be obtained.



APPENDIX

DEVELOPMENT OF THE COMPOUND DISTRIBUTION FOR A COMPOUNDING
DISTRIBUTION HAVING FOR ITS DOMAIN ANY REAL NUMBER

This appendix will develop the theory of the compound distribution
for a continuous compounding distribution f(n). As in Chapter III, let m be
the sum of k samples from the density function f(n), We wish to find the
compound distribution h(m) generated by the functions g(k), the sampling
distribution, and f(n). From Equation 3.1 we have

o]

h(m) -Z g®) him|X) . A.1)
k=0
Since m is the sum of k independent samples of f(n), the probability density
h(m|k) is given by the k-fold convolution of f(n), denoted, as before, by
£*(m), We define

5* (m) = 5 169 £k-D* (m-2) ax , k>1 ,
and
1 for m=0Q
% (m) =
0 otherwise . A.2)

We can now write Equation A, as

hm) =) o0 &%) (".3)
k=0



Let H(ju) and F (jw) (j=/=1) be the Fourier transforms of the density functions
h(m) and f(n), defined by

0
H(jw) = S him e 3™ am
-0
and

P@»=Sﬁm€wﬂm . (. 4)

Also, let us define the z-transform of the sampling distribution, G(z) as

0
GM=Zg®zk : ®.5)
k=0
If we multiply both sides of Equation A.3 by e-j""m and integrate over all m,
we obtain
) ®© o
S h(m) g duwm dm = Z g(k) S £k* (m) e tomgny (A.6)
% k=0 %0

Since the Fourier transform of the k-fold convolution of f(n) is the Fourier
transform of f(n) raised to the kth power, then using the definitions of Equation

A,.4, we may write Equation A.6 as

o8]

H(jw) =Z glk) [FU* . @Aa.7)
k=0

The definition of G(z) in Equation A,5 allows us to write

HQw) = G [FGw)] . (A.8)



This shows that the Fourier transform of the compound distribution, h(m),
is the z-transform of the sampling distribution, taking z to be the Fourier

transform of the compounding distribution,

Let us find the moments of the compound distribution in terms of
the moments of the sampling and compounding distributions, The rth moment

of a distribution is given in terms of its Fourier transform, B(jw), as

T oqr 8
x =it BT B(jw) =0 (A.9)

Then, using Equation A.9, we find

|

A= R | = O, (A. 10)
— 82 [ 5
2=y 5 rga | =sfERO (. 1)
w w=0
and
o2 = ffF O - DB 12 . (a.12)

The mean, m, and variance , o:\ , of the compound distribution, h(m),

may be obtained as follows:

H(jw) = G [F(w)] (A.13)

. () = G' (Fu)] SF! Gu) (. 14)

m= () =G' [F(O)] §F' (0) . (A.15)
© w=0 w



However,

o0
Hm=5ﬂmm-1 . (A.16)
Therefore,
m=G'()n
=kn . (A.17)

This result agrees with Equation 3,11 for the case of discrete compounding

distributions.

For the variance we compute

.

2 am-m2= JZH; () - [m; (Jw)lzl‘ !

m

(A.18)

! 'U=0 .
First, let us evaluate

$H Uu) = G* [FUIUF, G} 2+ G' PO £2E2 00, (A.19)

or

o2 = G* [F(0)]n? +G'FO]n%- kn)? . (A.20)
But

Gr()=o2-k+k2 . (a.21)
Therefore,

o2 = [ -K+k2) iZ+ kn? - k22



7202452 (A.22)
n

Again, this result agrees exactly with Equation 3.13 for the corresponding discrete

case.



